Common		Gauge Reference Table								Alloy % Composition Limits			
Strei	ngths	Hot I	Rolled, I	HR P&O	, Cold R	olled	G	alvanize	d	SAE No.	% Carbon	% Manganese	Phosphorus:
Metric	Standard		Dec.	Tolerand	e Range		Dec.			1002 ⁽¹⁾	0.02-0.04	0.35 Max	Typical values for
Units	Units	Gauge	Equlv.	HR,	J.	lbs./	Equlv. 1	Folerance	lbs./	1003 ⁽¹⁾	0.02-0.06	0.35 Max	P = 0.030 max
(MPa)	(ksi)	No.	NOM	P&0	CR	sq. ft.	NOM	Range	sq. ft.	1004 ⁽¹⁾	0.02-0.08	0.35 Max	Alternate levels
140	20,304	4	0.2242	0.2332 0.2152		9.375				1005 ⁽²⁾	0.06 Max	0.35 Max	shall be agreed upon
		-		0.2182		0.750				1006 ⁽²⁾	0.08 Max	0.45 Max	between purchaser and supplier.
160	23.205	5	0.2092	0.2002		8.750				1007 ⁽¹⁾	0.02-0.10	0.50 Max	Sulfur:
180	26 105	6	0.1943	0.2033		8.125				1008 ⁽²⁾	0.10 Max	0.50 Max	Typical values for
100	20.103			0.1873	0.1873					1009 ⁽²⁾	0.15 Max	0.60 Max	Flat Roll products:
200	29.006	7	0.1793	0.1713	0.1713	7.500				1010	0.08-0.13	0.30-0.60	S = 0.035 max. Alternate levels
220	24.007	8	0.1644	0.1724	0.1724	6.875	0.1681	0.1771	7.031	1012	0.10-0.15	0.30-0.60	shall be agreed upon
220	31.907		<u></u>	0.1564	0.1564	<u></u>		0.1591		1013	0.11-0.16	0.30-0.60	between purchaser
240	34.807	9	0.1495	0.1375	0.1575	6.250	0.1532	0.1622	6.406	1015	0.13-0.18	0.30-0.60	and supplier.
		10	0 1345	0.1425	0.1405	5 625	0 1382	0.1472	5 781	1016	0.13-0.18	0.60-0.90	Conner nickel
260	37.708			0.1265	0.1285		0.1002	0.1292	0.101	1017	0.15-0.20	0.30-0.60	chromium, and molybdenum
280	40.608	11	0.1196	0.1276 0.1116	0.1256 0.1136	5.000	0.1233	0.1323 0.1143	5.156	1018	0.15-0.20	0.60-0.90	values for specific
		42	0.4046	0.1126	0.1106	4.275	0.4094	0.1174	4 524	1019	0.15-0.20	0.70-1.00	applications shall
300	43.509	12	0.1046	0.0966	0.0986	4.375	0.1084	0.0994	4.531	1020	0.18-0.23	0.30-0.60	between purchaser
320	46,410	13	0.0897	0.0967	0.0947	3.750	0.0934	0.1014	3.906	1021	0.18-0.23	0.60-0.90	and supplier.
				0.0817	0.0797			0.0865		1022	0.18-0.23	0.70-1.00	Boron:
340	49.310	14	0.0747	0.0677	0.0697	3.125	0.0785	0.0705	3.281	1023	0.20-0.25	0.30-0.60	Standard killed carbon
360	52 211	15	0.0673	0.0733	0.0723	2.813	0.0710	0.0770	2.969	1025	0.22-0.28	0.30-0.60	may be produced with a
300	52.211			0.0613	0.0649			0.0605		1026	0.22-0.28	0.60-0.90	boron addition to improve
380	55.111	16	0.0598	0.0538	0.0548	2.500	0.0635	0.0575	2.656	1029	0.25-0.31	0.60-0.90	hardenability. Such steels
400	59.042	17	0.0538	0.0598	0.0578	2 250	0.0575	0.0625	2 406	1030	0.28-0.34	0.60-0.90	of 0.0005 - 0.003% boron.
400	30.012			0.0478	0.0498			0.0525		1033	0.30-0.36	0.70-1.00	These steels are identified
420	60.9126	18	0.0478	0.0528	0.0518	2.000	0.0516	0.0566	2.156	1035	0.32-0.36	0.00-0.90	by inserting the letter "B" between the second and
440	C2 0422	19	0.0418		0.0458	1 750	0.0456	0.0506	1 906	1037	0.35-0.42	0.60-0.90	third numerals of the grade
440	03.0132	10	0.0410		0.0378	1.750	0.0400	0.0406	1.500	1030	0.33-0.42	0.00-0.00	number, for example, 10B46.
460	66.7138	20	0.0359		0.0389 0.0329	1.500	0.0396	0.0436 0.0356	1.656	1033	0.37-0.44	0.60-0.90	Copper:
		- 24	0.0000		0.0359	4.075	0.0000	0.0406	4.504	1040	0 40-0 47	0.60-0.90	When copper is required, 0 200% minimum is generally
480	69.6144	21	0.0329		0.0299	1.375	0.0366	0.0326	1.531	1042	0.40-0.47	0.70-1.00	stated.
500	72.515	22	0.0299		0.0329	1.250	0.0336	0.0376	1.406	1044	0.43-0.50	0.30-0.60	Notes:
					0.0299			0.0346		1045	0.43-0.50	0.60-0.90	1. Ultra low carbon,
520	75.4156	23	0.0269		0.0239	1.125	0.0306	0.0266	1.281	1046	0.43-0.50	0.70-1.00	interstitial free
540	78.3162	24	0.0239		0.0269	1.000	0.0276	0.0316	1.156	1049	0.46-0.53	0.60-0.90	nonstabilized
					0.0209			0.0230		1050	0.48-0.55	0.60-0.90	steel shall NOT
560	81.2168	25	0.0209		0.0239	0.875	0.0247	0.0207	1.031	1053	0.48-0.55	0.70-1.00	be supplied for these grades
580	84 1174	26	0 0179		0.0199	0 750	0 0217	0.0247	0 906	1055	0.50-0.60	0.60-0.90	2. Ultra low carbon,
	04/11/4				0.0159		0.0211	0.0187		1060	0.55-0.65	0.60-0.90	interstitial free
600	87.018	27	0.0164		0.0184 0.0144	0.688	0.0202	0.0232	0.844	1065	0.60-0.70	0.60-0.90	stabilized and nonstabilized
600	00.0400	20	0.0140		0.0169	0.625	0.0197	0.0217	0 704	1070	0.65-0.75	0.60-0.90	steel may be supplied
020	09.9180	20	0.0149		0.0129	0.025	0.0187	0.0157	0.781	1074	0.70-0.80	0.50-0.80	for these grades.
640	92.8192	29					0.0172	0.0202	0.719	1075	0.70-0.80	0.40-0.70	
								0.0187		1078	0.72-0.85	0.30-0.60	
660	95.7198	30					0.0157	0.0127	0.656	1080	0.75-0.88	0.60-0.90	
Eve	pected Ha	rdnose	s Aime							1101-1	On last to		
	лестей ца	runes	5 AIIIIS							HSLA	Grade Matri	X	

Ex	pect	ted I	Hard	ness	Aims

	Label	Hardness (Rb)	Yield Strength MPa (ksi) min.	US Gr	ades	European Grades	German Grades	Japanese Grades
Cold	CS	55-70	240 MPa (35)		SAE J1392 035XLF		SEW 092 QStE 260 TM	
Roll Sheet	DS	45-60	280 MPa (40)		SAE J1392 040XLF			
	DDS	40-55	310 MPa (45)	ASTM A1011	SAE J1392 045XLF	EN10149-2/2009 S315MC		JIS G3113 - SAPH 400**
	EDDS	30-50		HSLAS 45 Class 1 or 2 ASTM A1011	SAE J2340 300XF			
Hot Roll	1006 BorDS	60 max	340 MPa (50)	HSLAS 50 Class 1 or 2	SAE J1392 050XLF SAE J2340 340XF SAE J2340 380XF SAE J1392 060XLF SAE J2340 420XF	EN10149-2/2009 S355MC	SEW 092 QS(E 340 TM	JIS G3113 - SAPH 440**
	1006 DS	65 max		HSLAS-F 50 ASTM A1011				
	1006 TiDS	50-75	380 MPa (55)	HSLAS 55 Class 1 or 2			SEW 092 QStE 380 TM	JIS G3134 - SPFH 490
	1006 CS	55-70	410 MPa (60)	ASTM A1011 HSLAS 60 Class 1 or 2		EN10149-2/2009 S420MC	SEW 092 QSIE 420 TM	JIS G3134 - SPFH 540
	1010	70 max	· · · ·	HSLAS-F 60				
	1010	75 max	460 MPa (65)	ASTM A1011 HSLAS 65 Class 1 or 2		EN10149-2/2009 S460MC	SEW 092 QSIE 460 TM	
				ASTM A1011	SAE J1392 070XLF			
	1018	80 max	480 MPa (70)	HSLAS 70 Class 1 or 2 HSLAS-F 70	SAE J2340 490XF	EN10149-2/2009 S500MC	SEW 092 QStE 500 TM	JIS G3134 - SPFH590
	1018	85 max	550 MPa (80)	ASTM A1011 HSLAS-F 80	SAE J1392 080XLF SAE J2340 550XF	EN10149-2/2009 S550MC	SEW 092 QStE 550 TM	

Galvanized Product						Ro	lled Steel Te	ignations	High Strength				
ASTM A653		Hot [Dip and Galva	nneal Zinc co	atings	Terms CS - Commercial Steel (formerly CQ)					Steel Sheet		
		Avai	lable in CS, FS	6, DDS, HSLA			DS - Drav	wing Steel (fo	rmerly DQ)		YS, TS, a mins. o	nd Elongation are nly, no Rb spec	
		Coat	ing weight is f	for BOTH side	es (oz / sq. ft²)		FS - Forr	ning Steel (si	milar to DS) prmable version of DS:	Labol	Description	
		Prod coati	uct triple spot	tested for mi o max limit), e	inimum except G01		DDS - can replace DQSK, DQAK)				Laber	Description	
		and	A01				EDDS - Extr	ra Deep Drawi merlv IF)	ing Steel; Ir	nterstitial Free Steel		10 points	
		Galv	anize: G30–G6	60 Galvanr	neal: A25–A60		DQSK, DQAK N	IOT equivalen	t to DQ Sili	con Killed or DQ	XLK / F	between YS and TS	
ASTM A879,	, A917	Elect	trogalvanize			Hot Roll	CS			DS			
				visible crystallites			Generally for no	nonexposed May be used on CS applications		ed on CS applications		15 KSI spread	
				on the s	steel surface;		Simple bonds a	nd forming	Higher n-v	alue and % Elongation		and TS	
			Spangle -	produce	e minimum		Simple benus a	line forming	than CS	han 66			
				spangle spangle	e (zero e)	Cold Roll		DS	Lower KD t	FDDS	711/15	20 KSI spread	
				Defect o	aused by	oold itoli	Can NOT be use	ed on EDDS	Can be use	ad on DDS applications		and TS	
			Flaking	either to	oo much ating or dirty		applications) Saula au		2 005% Corbor			
			Flaking -	surface	prior to		Interstitial space	e between	Interstitial	Free - TiC, NbC, and		Ca added	
				Chromo			elements	tehekility).	TiN fill spa	ce between elements	F vs. K	control - extra	
			Chemtreat -	designe	ed to prevent		0.17 - 0).22	<i>n</i> -values	(stretchability): 0.24+		formability	
				Zinc oxi	idation		<i>r</i> -value (drawa	ability): 1.6	<i>r</i> -value	e (drawability): 1.7+			
			Oil -	Primaril Iubricat	y for ion (further		Low work harde OK for progress	ening rates - sive dies	High work good for p	hardening rates - not rogressive dies	45 HSLA		
				process	sing)		Severe Deforma	ation Parts	Complex D	Deep Drawn Parts -			
			A	Protects	s Zinc and		Hoods	buy sides,	Pans	e Dash Paneis, On		Discontinued	
			Acrylic -	forming			Note: EDDS is c	often used as	substrate i	n HR HD galv to meet		SAE spec.	
Zinc	Coat		Noight Co	nvorsion	Guido	Temper	Improves shape	e, gauge, and	prevents lu	ıder lines	J1392	- tighter chemistry for	
200	CUat	ing v			Guide	Pass	(discontinous yielding), 0.25-5.0% reduction, noncritical surface finish applications - good for painted products					automotive only	
Weight (oz/ft ²)	Wei (Ibs	ight Mass Thickness Thickness s/ft²) (g/m²) (mm) (u)				One Reco	Gauge correcte	d HR that hol	Ids CR or C	RST gauge tolerance	100.00	New version	
0.010		, 1625	3 051506	0.016825	0 /27382	One Pass	uniform thickness, surface critical exposed applications				J2340	SAE J1392 with max limit for YS	
0.010	0.00	1250	6 103012	0.033651	0.854764	Cold Roll 30.0-70.0% reduction, surface critical exposed and					Defferred to an		
0.030	0.00	1875	9.154518	0.050476	1.282145	Sheet	20.0-60.0% redu	uction, highly	engineere	d product with	ASTM	Grade 50, 60,	
0.040	0.002	2500	12.20602	0.067302	1.709527	Cold Roll Strip	consistent dim	ensional and	internal ch	aracteristics,	HSLA's	etc. "F" means formable	
0.050	0.003	3125	15.25753	0.084127	2.136909						ļ		
0.060	0.003	3750	18.30903	0.100953	2.564291	Standard	andard AISI Edges ASTM, SAE Specin						
0.070	0.004	4375	21.36054	0.117778	2.991673	No. 1	ASTM 1008 Cold Roll Available in CS, DS, DDS, EDDS						
0.080	0.00	5000	24.41204	0.134604	3.419055	Square				Available in CS, DS, DDS, EDDS, SS, HSLA, HSLA-F			
0.090	0.00	5625	27.46355	0.151429	3.846436	Edge			CS type A tighter Carbon chemistry requirements than type B				
0.100	0.006	6250	30.51506	0.168255	4.273818		Type B has 0.02 min Ca			as 0.02 min Carbon for	on for EDDS restriction		
0.150	0.009	9375	45.77259	0.252382	6.410727	No. 1	Pertinent AST			t ASTM Documents - A5	ments - A568, A109, A620		
0.200	0.012	2500	61.03012	0.336510	8.547636	Round Edge			Rb depe	ndant on the temper des	signation		
0.250	0.01	5625	76.28765	0.420637	10.684545				CS => EDDS increasing drawability (n-value)				
0.300	0.018	1875	91.54518	0.504764	12.821455	No. 2		ASTM 1011	Hot Roll				
0.330	0.02	5000	122 0602	0.566692	17.095273	Natural Mill			Availabl	e in CS, DS, SS, HSLA, H	ISLA-F		
0.450	0.02	3125	137.3177	0.757147	19.232182	Edge			Type B h	as 0.02 min Carbon for	EDDS restri	ction	
0.500	0.03	1250	152.5753	0.841274	21,369091				Pertinen	t ASTM Documents - A5	68, A569, A	622, A635, A74	
0.550	0.034	4375	167.8328	0.925401	23.506000	No. 3			CS -	YS: 28-43 ksi TS: 45-5	5 KSI E: 32-	47% Rb: 55-70	
0.600	0.037	7500	183.0903	1.009529	25.642909	Slit			DS -	15: 25-40 KSI 15: 43-5	5 KSI E: 37-	49% KD: 45-60	
0.650	0.040)625	198.3479	1.093656	27.779818	-490	· · ·		EDDS -	may result in blanking	problems	wever, sonness	
0.700	0.043	3750	213.6054	1.177784	29.916727			ASTM	Heavy ga	auge HR General Require	ments, Heav	vy gauge CS, DS,	
0.750	0.046	6876	228.8629	1.261911	32.053636	No. 4 Round		A815, A612	SS, HSL	AS			
0.800 0.050000 244.1204		1.346038	34.190546	Edge		ASTM A36	Plain Ca	roon Structural Steel					
0.850 0.053125		3125	259.3780	1.430166	36.327455			ASTM A606	HR Steel with Corrosion Resistance				
0.900	0.056	6250	274.6355	1.514293	38.464364	No. 5		ASTM A109	CR Strip	CR Strip			
0.950	0.059	9375	289.8930	1.598421	40.601273	De-burred Edge		ASTM A815, A612	Pressure	Pressure Vessles			
1.000	0.062	2500	305.1506	1.682548	42.738182	Lugo	-	ASTM A568	B HR & CR	HR & CR Sheet General Requirements (Plain Carbon, HSI A)			
Hand	dy Co	oil Fo	ormulas (S	Standard	Units)	No. 6		SAE J2329	LC Auto	Sheet Steel, Categorizati	on and pror	perties	
Coil Linear	Footag	je = co	oil weight / (ga	uge * width *	* 3.3996)	Square		SAE J403	Plain Ca	rbon Steel Chemistries			
Piece Weig	Jht = (0.	2833 *	gauge * widt	h * length)		Edge		SAE 1404	Allow Ot	ol Chomistrics			
Pounds / Ir	ich Wid	th = c	oil weight / co	oil width				0AL 3404	Anoy Ste	or orientistries			

Common Coil Imperfections								
	Description	Possible Cause(s)						
Burrs	An edge condition inherent to the metal	A dull knife.						
	sitting process.	The horizontal knife clearance is too tight or too loose.						
		The vertical knife clearance is set too deep.						
Camber	Deviation of a side edge from a straight edge. Measurement is taken by placing a straight edge on the concave side of a sheet and measuring the distance between the sheet edge and the straight edge in the center of the arc. Narrow slits are more likely to display camber.	A defect in the master coil. Too much or too little tension in the slitter.						
Coil Set	Metal strip exhibits a curvature in the direction of its length.	A defect in the master coil. Fibers on one of the surfaces of the strip have been stretched longer than the opposite surface. The strip curves towards the side having shorter fibers and the difference in fiber length is caused by winding the coil too tight.						
Cross Bow	Curvature across the width of the strip.	A defect in the master coil.						
		Too much overlap (vertical clearance) in the slitter.						
		Stripper rings are the wrong size - male rings too big or						
		female rings too small.						
Edge Waves	Wavy vertical edges.	A defect in the master coil. Poor stripper ring practices. If the stripper ring ODs are too small, the knives must be lowered to overcome slippage. If the rings are too big, the metal will become stretched at the edges. The rings not being parallel will also contribute to edge wave.						
Inclusions	Impurities inherent to the steel making process.	Impurities are trapped in the solidifying steel.						
Knife Marks	Marks on the surface of the strip.	Poor stripper ring practices. Propper stripper ring practices include utilizing male and female rings of different sizes, colors, and hardnesses. Size and hardness are not absolute constraints and may vary from machine to machine. The size should vary from one metal and thickness to another.						
Rollmarks	Indentations or depressions on the surface of the coil.	Foreign materials on the work rolls.						
Scale	Oxide of iron that forms on the surface of steel after heating.	Inadequate descaling or pickling.						
Scratches	Shiny - damage occured after pickling. Dull - damage occured prior to pickling.	Can be caused in hot rolling mill, annealing and pickling line, cold rolling mill, or skin pass line.						
Skin Lamination	Cracks, folds, and tears in the coil surface.	Occurs in the mold when cooling of the steel is insufficient. Lamination can also occur due to misalignment of the supporting rolls around the caster mold, causing mechanical damage and/or compression of the shell, entrapping inclusions in the underlying steel structure. These mechanical causes can result in voids of segreation that will eventually become surface imperfections.						

Surface Roughness Conversion Chart

Ra (µm)	Ra (µin)	RMS	CLA (N)	Rt	N	in	mm
0.025	1	1.1	1	0.3	1	0.003	0.08
0.05	2	2.2	2	0.5	2	0.01	0.25
0.1	4	4.4	4	0.8	3	0.01	0.25
0.2	8	8.8	8	1.2	4	0.01	0.25
0.4	16	17.6	16	2.0	5	0.01	0.25
0.8	32	32.5	32	4.0	6	0.03	0.8
1.6	63	64.3	63	8.0	7	0.03	0.8
3.2	125	137.5	125	13	8	0.1	2.5
6.3	250	275	250	25	9	0.1	2.5
12.5	500	550	500	50	10	0.1	2.5
25.0	1000	1100	1000	100	11	0.3	8.0
50.0	2000	2200	2000	200	12	0.3	8.0
D. D							

Ra - Roughness Average in micrometers or microinches RMS - Root Mean Square in microinches CLA - Center Line Average in microinches Rt - Roughness Total in microns N - New ISO (grade) scale numbers Cut-off Length - Length required for sample

	Fractio	n Length	Camber Calculator					
Fraction	Inches	Millimeters	Fraction	Inches	Millimeters	(Ľ	0 ² * C) / (d ²) = Camber	
1/64	0.0156	0.397	3/64	0.0469	1.191	D = Length unknown camber		
1/32	0.0313	0.794	5/64	0.0781	1.984	C = Camb	= Camber known length = Length known camber	
1/16	0.0625	1.588	3/32	0.0938	2.381			
1/8	0.1250	3.175	5/32	0.1563	3.969		0.125 Camber in 6.0" How much camber in 8.0"?	
1/4	0.2500	6.350	3/8	0.3750	9.525	Example		
1/2	0.5000	12.700	5/8	0.6250	15.875		(8° ° 0.125)76° = 0.222"	

Fractions Decimals Millimeters

		<u>Decimal</u>	Millimeters
	1/64	0.0156	0.397
	1/32	0.0313	0.794
1/16	3/64	0.0625	1.588
	5/64	0.0781	1.984
	3/32	0.0938	2.381
	7/64	0.1094	2.778
1/8		0.1250	3.175
	9/64	0.1406	3.572
	5/32	0.1362	4 366
3/16		0.1875	4.763
	13/64	0.2031	5.159
	7/32	0.2188	5.556
	<mark>15/64</mark>	0.2344	5.953
1/4		0.2500	6.350
	17/64	0.2656	6.747
	9/32	0.2813	7.144
5/16	- 19/04	0.3125	7.938
	21/64	0.3281	8.334
	11/32	0.3438	8.731
	23/64	0.3594	9.128
3/8		0.3750	9.525
	25/64	0.3906	9.922
	13/32	0.4063	10.319
7// 0	27/64	0.4219	10.716
//16	- 20/64	0.4375	11.113
	15/32	0.4688	11.906
	31/64	0.4844	12.303
1/2 -		0.5000	12.700
	33/64	0.5156	13.097
	17/32	0.5313	13.494
over	35/64	0.5469	13.891
9/10	37/64	0.5625	14.200
	19/32	0.5938	15.081
	39/64	0.6094	15.478
5/8		0.6250	15.875
	41/64	0.6406	16.272
	21/32	0.6563	16.669
	43/64	0.6719	17.066
11/16=		0.6875	17.463
	23/32	0.7031	18 256
	47/64	0.7344	18.653
3/4		0.7500	19.050
	<mark>49/64</mark>	0.7656	19.447
	25/32	0.7813	19.844
	51/64	0.7969	20.241
13/16-	F2/24	0.8125	20.638
	27/32	0.8438	21.034
	55/64	0.8594	21.828
7/8		0.8750	22.225
	57/64	0.8906	22.622
	29/32	0.9063	23.019
	<mark>59/64</mark>	0.9219	23.416
15/16		0.9375	23.813
	61/64	0.9531	24.209
	51/32	0.9688	24.606
	03/04	0.9644	25.003

Cold Roll Strip Temper Designations									
Label	Description	Hardness (Rb)	Purpose						
No. 1	Full Hard	84 min	Flat working only						
No. 2	½ Hard	70-85	90° Bends perpendicular to rolling direction						
No. 3	¼ Hard	60-75	180° Bends, Limited Form, Draw						
No. 4	Skin Rolled	65 max	Deep Draw, 180° Bends (any direction)						
No. 5	Dead Soft	55 max	Nonexposed steel susceptible to stretcher strain						

Scan the Worthington QR code to learn more!

Zinc Additions										
Coating	Re	Single equiren	e Spot nents (in)	Triple Spot Avg. Requirements (in)				Zinc +	
Specs:	Each	Side	То	Total		Each Side		Total		
	Min	Max	Min	Max	Min	Max	Min	Max		
ASTM 653 F	Requirem	nents								
G01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0000	
G30	0.07	0.50	0.25	0.75	0.10	0.40	0.30	0.60	0.0005	
G40	0.10	0.60	0.30	0.85	0.12	0.50	0.40	0.80	0.0007	
G60	0.15	0.80	0.50	1.25	0.20	0.75	0.60	1.15	0.0010	
G75	0.20	0.90	0.65	1.40	0.26	0.85	0.75	1.30	0.0013	
G90	0.26	0.95	0.80	1.50	0.32	0.90	0.90	1.40	0.0015	
G115	0.30	1.10	1.00	1.75	0.40	1.05	1.15	1.65	0.0020	
G140	0.35	1.25	1.20	1.95	0.48	1.20	1.40	1.85	0.0024	
G165	0.40	1.35	1.40	2.20	0.56	1.30	1.65	2.10	0.0028	
G185	0.50	1.60	1.60	2.45	0.64	1.50	1.85	2.35	0.0031	
G200	0.50	1.85	1.80	3.00	0.72	1.80	2.00	2.90	0.0034	
G210	0.55	2.00	1.80	3.10	0.72	1.90	2.10	3.00	0.0036	
G235	0.60	2.20	2.00	3.25	0.80	2.10	2.35	3.35	0.0040	
A01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0000	
A25	0.07	0.40	0.20	0.65	0.08	0.35	0.25	0.65	0.0004	
A40	0.10	0.60	0.30	0.85	0.12	0.50	0.40	0.80	0.0007	
A60	0.15	0.80	0.50	1.25	0.20	0.75	0.60	1.15	0.0010	
UL Require	ments									
G60UL	0.20	0.70	0.50	1.25	0.24	0.60	0.60	1.15	0.0010	
G90UL	0.32	0.80	0.80	1.50	0.36	0.75	0.90	1.40	0.0015	
Ordering Su Customer N	ıbstrate lin Gaug	e - Zinc /	Addition	= Min S	ubstrate	Gauge				
Example Customer Order: 0.098" Min, G90										

Metric Conversion Chart										
	Standard Units	Multiply By → ← Divide By	Metric Units							
Length	inches (in)	25.4	millimeters (mm)							
	feet (ft)	0.3048	meters (m)							
	microinches (µin)	0.0254	microns (µ)							
Weight	ounces (oz)	28.3495	grams (g)							
	pounds (lbs)	453.59	grams (g)							
	ton (T)	0.907	metric tonne (t)							
	grams (g)	0.001	kilograms (kg)							
Coating Weight	ounces / ft²	305	grams / meter²							
Density	pounds / inch³	27.68	grams / inch³							
Stress kilopound / in² (ksi)		0.14503	megapascals (MPa)							
	pounds / in² (psi)	145.03	megapascals (MPa)							
Surface	microinches (µin)	0.0254	micrometers (µm)							

Worthington Steel Customer Claims Policy

Worthington Industries is committed to the highest quality steel processing and to serving our customers to 100% satisfaction while encouraging and maintaining continuous improvement through leadership and employee involvement.

Our goal is to ship product with zero defects to our customers every time. We believe our people, systems, and processes produce quality that is superior to other steel suppliers in the marketplace.

When a problem arises, Worthington will make every effort possible to address the situation in a timely manner in order to resume shipment of high quality product. Worthington expects to receive sufficient evidence (samples, Photographs, etc.) of the defective material so that we can determine the root cause and formulate corrective actions at our plant.

When Worthington agrees that steel supplied is defective, we accept liability for the price of the steel plus applicable inbound freight. We expect customers to work with us to minimize overall cost when a rejection is necessary, just as we work with our suppliers in similar situations.

When defective material is scrapped at a customer's plant, Worthington expects to receive scrap credit at the prevailing scrap price, less a reasonable handling charge. We are willing to work with the customer to find buyer who will pay a competitive price for our scrap, thereby reducing the overall cost of claims to our supply chain.

Worthington does not accept liability for administrative, downtime, sorting, or other charges that are beyond the value of the steel involved in a claim.

Worthington does not accept claims for obsolete material that is over one year old.

DRIVING STEEL FORWARD